Automatic Debug Down to the Line

Daniel Hansson, Patrik Granath
verifyter

Introduction Results

Binary Search Commit Sizes In real ASIC projects
Project No of Commits | Days Betwgen Time Period Total Commits
a) Can flnd a Single regreSSiOn bug Between Bad Commits Bad Commits
1 40.5 2.8 Janl—-Aug 4690
Step Commits (forming one Timeline) Result 112014
1 2 3 4 5 6 ! 38 2 45 1.3 Aug 1 2013 — 8585
Mar 1 2014

Pass

Number of Lines Per Commit
Sorted Per Quartile

AW IN|PF

160

140

120

b) Cannot handle two regression bugs

100 _ |
e Bad Commits (Proj 1)

A
b
: . . . = 80 : .
Step Commits (forming one Timeline) Result = Bad Commits (Proj 2)
1 2 3 4 5 6 7 60 All Commits (Proj 1)
1 - A0 e A || Commits (Proj 2)
2 20
: I
0
4 25% quartile 50% quartile 75% quartile
5 (median)
Result

Example using the Median Commit Size
Delta Debugging

1000 commits,

7500 modified lines*

\
[|

a) Can debug independent code chunks I

Test Fall

Test Pass

Bad Commit,

Step Code Chunks Result 27 modified lines**

1 Pass * median commit size is 7.5 lines
5 ** median bad commit size is 27 lines
j Using Binary Search to find the bad commit and Delta
- Debugging to find the bad chunks within the commit
Resul Iteration Find Bad Commit, Then Delta Debugging
b) Cannot debug along a timeline (commits) (line chunks)
1 Every 100
Step Commits (forming one Timeline) Result 2 Every 10
n 2 . . > ° ! 3 Everyl Within bad commit:
5 4 14, 7, 3 chunks
3 5 4,3,2,1 line chunks
4 6 1,2 line chunks
Result :
7 1 line chunks

Conclusion

Summary Combining the two algorithms provides a good debug time for
line granularity

No of Bugs Timeline EXists No Timeline
Single Bug Binary Search Both Scenario Debug Time (No of Times to re-run Failing Test)

Multiple Bugs Delta Debug (only 1000 commits 5-7
Independent bugs) 100 commits 4-6

10 commits 3-5

