

Introduction

In End to End (E2E) formal verification, IPs are described fully using formal properties based off

the IP specification. Registers are checked with automatically generated assertions, from an

IPXACT XML file. Standard interfaces are checked with formal property proof kits, instead of VIP.

The quality and completeness of these assertions is checked by frequent reviews against the IP

specification with the design team. Once all formal properties are signed off by design, and all

assertions and proof kits have been proven, the IP is then considered fully verified.

E2E formal verification does not carry the overhead that comes with writing UVM testbenches,

such as the authoring of custom agents, sequence libraries, and scoreboards. Also IP

specification is available before RTL is delivered, allowing DVEs to get a head start on

developing the verification environment.

Careful appraisal of compatibility with the methodology is critical when selecting an

IP for formal verification. Generally, IPs need to be small and relatively simple. Two IPs:

Interrupt Controller (INTC) and Crossbar (XBAR) were verified using this methodology.

Challenges

Quality: Since most EDA tools did not have good coverage reporting tools, extra effort had to be

made to ensure that all features/aspects of the design were covered by the written assertions.

Verification IP: Not all EDA tools had proof kits for most standard interfaces and configurations.

Convergence: Templated assertion generation was used for the INTC due to its high symmetry,

which ultimately produced 420K assertions and led to very long compile times. By dividing the

testbench into to sets of 10K-40K assertions, total runtimes fell to well within practical limits.

Reporting: At the time of its development, the formal tools available did not provide coverage
metrics that could be easily compared to simulation coverage metrics.

Strategies

Results

To quantify and analyze the quality and ROI on E2E formal verification methodology and to
normalize the complexity of various IPs verified by different methods, the following metrics were
considered:
1. Gates verified per LOC-DV (Lines of Code—Design Verification) per day
2. Bug density per 1K LOC-DV
3. Bug escaped per IP testbench

From the experiment it is clear that formal E2E testbenches can achieve the same quality of IP
verification as UVM testbenches in terms of bug escapes.

Advantages

Even though E2E formal methodology requires additional time reviewing assertions, savings
were realized through:

Testbench Coding: Less code required compared to UVM testbench. Testbench is ready on first
day of RTL delivery. First RTL bugs can be discovered as soon as the first RTL release.

Coverage Closure: Proofs are exhaustive and thus there is no coverage closure step.

Regressions: Random testing and nightly regressions are not required due to exhaustive proof.

Bug Reproduction: Fail sequences are available as soon as proofs complete, so debugging can
start immediately without waiting to rerun a failing test as in simulation.

Simplified Testbench: Repeated patterns, symmetries, and reused sub-blocks allow for
simplification of the testbench using the strategies described earlier, saving runtime without
having to compromise on the quality of verification.

Recommendations for Deploying E2E Formal Verification

IP Selection: Any IP which can be fully specified in SVA is generally a good candidate. Ideal
candidates should have a shallow cone of logic, low gate count, and low complexity.

Enforcing Assertion Quality: At the time of our research, existing formal tools did not offer a
solution for coverage tracking similar to that of simulation based metrics. Without a coverage
solution, extensive reviewing between DEs and DVEs must be done to enforce testbench quality.

Aforementioned Strategies: We also recommend employing the aforementioned strategies when
deploying E2E formal verification, on IPs where those strategies apply. Use of these strategies
reduces assertion counts and runtimes, without compromising the quality of the verification.

Conclusion

End-To-End Formal Verification is well suited for certain types of highly symmetric and control
path intensive designs. This methodology is worth the savings realized in verification effort and
resources, and is able to achieve at least the same quality of verification compared to UVM
testbenches. It definitely provides some compelling cost benefit against traditional
simulation/UVM testbenches.

End to End Formal Verification Strategies for IP Verification
Jacob Ryan Maas, Nirabh Regmi, Krishnan Palaniswami, Ashish Kulkarni

Microsoft Corporation

U
n

it
 0

Unit 2

Bank Modules

U
n

it
 1

Maskable Level Interrupts

In
terru

p
t R

o
u

tin
g

Interrupt Bit-Vectors

Bus Slave

Maskable Output Interrupts

MMIO

Testbench GateCount
DV

Resources

Duration
(Work
days)

LOC-DV
Total

Person-Days

Gates verified
per LOC-DV

per person day

Bug

Escape

Bugs Found
per 1K LOC

IP1 (UVM) 3170202 2 178 9795 356 0.91 1 4.39

IP2 (UVM) 381608 2 182 24725 364 0.04 0 4.45

IP3 (UVM) 1255701 3 215 33311 645 0.06 2 4.23

IP4 (UVM) 75593 1 156 12564 156 0.04 0 3.10

IP5 (UVM) 108912 1 142 6630 142 0.12 0 3.62

IP6 (UVM) 541479 1 172 25729 172 0.12 0 1.98

IP7 (UVM) 299693 1 146 12488 146 0.16 0 0.48

IP8 (UVM) 129607 1 151 8914 151 0.10 0 1.68

IP9 (UVM) 89230 1 109 7786 109 0.11 7 3.98

IP10 (UVM) 41387 1 127 5873 127 0.06 0 0.85

IP11 (UVM) 486092 1.25 147 35376 183.75 0.07 0 0.40

INTC 304174 1 87 1300 87 2.69 0 8.46

XBAR 61118 1 82 5000 82 0.15 1 3.40

Divide And Conquer

 Runtimes measured with four sets of

assertions, with dividing and without.

 Even in smaller sets, Divide and Conquer

strategy yields => 24% reduction in runtime.

 Runtime benefit of Divide and Conquer has

nonlinear growth with respect to assertion
count.

Hierarchical Strategy

 Testbench is organized such that identical

block instantiations are verified only once.

 Unique instantiations and block connections

verified by parent level assertions.

 Hierarchical Strategy saw earlier sign-off by

reducing DVE workload.

Abstraction
Large families of assertions to be reduced to equivalent, single assertions with limited
addition of Verilog in the glue logic. This reduction in property count significantly improved
runtime, despite checking identical functionality.

Conventional Methods
Tool specific optimizations, constraining inputs.

Based on the gates verified per LOC-DV per
person-day, it can be inferred that equal, if
not greater, efficiency can be achieved using
formal E2E compared to simulation/UVM
methodologies.

Formal E2E can find more bugs per LOC-DV
than UVM testbenches, primarily due to the
fact that only assertions and minimal glue
logic (if any) are needed for the formal
testbench.

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0

10000

20000

30000

40000

50000

60000

70000

80000

Run1 Run2 Run3 Run4

T
o
ta

l
T

im
e
 (
H

r)

#
 A

s
s
e
rt

io
n
s

Test Group

RunTime

NumAssertions Total Time (Hr) - Full Set Total Time (Hr) - Split Sets (Groups of 10K assertions)

Block I: Crossbar

 Controls access to shared memory

space from three different requesters.

 Supports round robin, fixed, and

LFSR priority schemes.

 Single requestor may lock exclusive

access to a channel.

 Most complexity contained in “Bank”

arbitration logic.

Block II: Interrupt Controller

 May accept level or edge interrupts.

 Routes incoming interrupts to flag registers,

which are collapsed into single output interrupt
lines.

 Output interrupt lines may be set and cleared

by the bus, allowing SW controlled interrupts.

 Input and output interrupt lines may be gated.

 Highly symmetric logic.

